Building Information Modeling (BIM)

Hyoungkwan Kim

http://en.wikipedia.org/wiki/Building_Information_Modeling BIM Handbook: Chuck Eastman, Paul Teicholz, Rafael Sacks, Kathleen Liston

BIM Handbook: Chuck Eastman, Paul Teicholz, Rafael Sacks, Kathleen Liston
Bilal Succar (2009) "Building information modelling framework: A research and delivery foundation for
industry stakeholders." Automation in Construction, 18, 357-375
http://en.wikipedia.org/wiki/Industry, Foundation, Classes
http://en.wiki/Industry, Foundation, Foundation,

Needs

• "\$15.8 billion is lost annually by the U.S. capital facilities industry resulting from inadequate interoperability due to the highly fragmented nature of the industry, the industry's continued paperbased business practices, a lack of standardization, and inconsistent technology adoption among stakeholders" – NIŠT (2004), "Cost Analysis of Inadequate Interoperability in the U.S. Capital Facilities Industry"

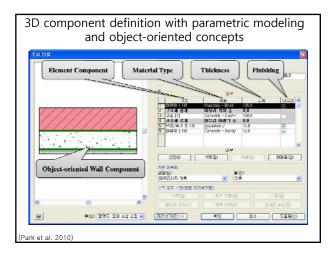
Construction Supply Chain Review Construction Cycle

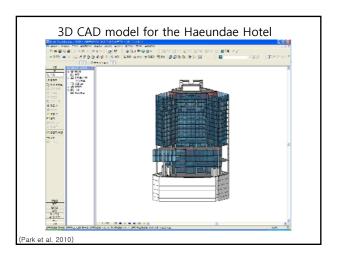
Definitions

- An object-oriented building development tool that utilizes 5-D modeling concepts, information technology and software interoperability to design, construct and operate a building project, as well as communicate its details - Associated General
- The process of generating and managing building data during its life cycle wikipedia
- Building Information Modelling (BIM) is a set of interacting policies, processes and technologies generating a methodology to manage the essential building design and project data in digital format throughout the building's life-cycle Succar (2009)

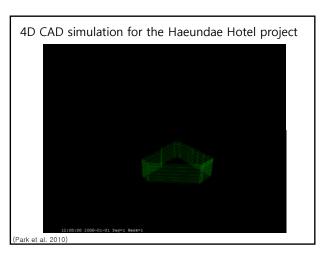
Industry Foundation Classes

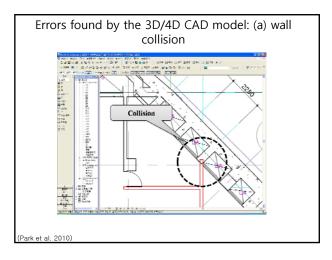
- The Industry Foundation Classes (IFC) data model is a neutral and open specification that is not controlled by a single vendor or group of vendors.
- It is an object oriented file format with a data model developed by the International Alliance for Interoperability (IAI) to facilitate interoperability in the building industry, and is a commonly used format for Building Information Modeling (BIM).
- The IFC model specification is open and available.

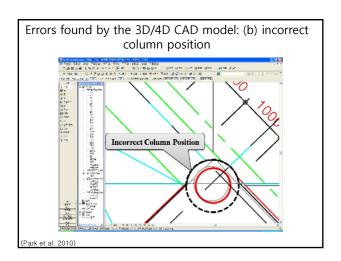

(http://en.wikipedia.org/wiki/Industry_Foundation_Classes


BIM software

- Autodesk Revit, Inventor
- Beck Technology DProfiler
- Bentley Microstation
- Dassault Catia, Delmia, Virtools
- Gehry Technologies Digital Project
- Graphisoft ArchiCAD
- Tekla Tekla Structures


Phase	3D/4D CAD application area	Cod
Planning	Early cost estimation	Al
	Construction site review	A2
	Conceptual project visualization	A3
	Parametric modeling to automatically update construction documents	B1
	Accurate design development	B2
	Quantity takeoff	B3
	Communication among different engineering fields	B4
	Communication among different contracting entities	B5
Design	Structural design support	B6
Design	Automatic design problem identification	B7
	Drawing documentation	B8
	Constructability analyses	B9
	Shop drawing replacement	B10
	Construction schedule estimation	B1


3D/4D CAD applicability areas in life cycle facility			
	management (Cont'd)		
Phase	3D/4D CAD application area	Code	
	Shop drawing development	Cl	
	Collision check	C2	
	Workspace analyses	C3	
	Construction method review	C4	
	Final product visualization	C5	
	Quantity takeoff	C6	
	Safety hazard prediction	C7	
Construction	Change order management	C8	
	Time management	C9	
	WBS development	C10	
	Schedule evaluation	C11	
	Comparison between as-planned and as-built models	C12	
	Construction sequential logic testing	C13	
	Digital mock-up testing	C14	
Operation/ Maintenance	Rapid search for structural components	D1	
	Shape identification of equipment components	D2	
	Workspace analyses	D3	
Life cycle	Communication across the facility life cycle	E1	
	Communication among different engineering fields	E2	
	Facility information formalization	E3	
	Renovation facilitation	E4	
(Park et al. 2	010)		



Interactive 3D CAD for Effective Derrick Crane Operation in a Cable-Stayed Bridge Construction

- Cable stayed bridges have recently gained increasing popularity.
- The unique nature of a civil engineering project tends to require construction methods customized for the specific project.
- With this unique conditions in the one-of-a-kind construction site, the constructability is at stake.
- In this study, an interactive 3D CAD system is proposed to predict potential problems in cablestayed bridge constructions.

(Park et al. 2009)

Two major methods for installing deck segments in cable-stayed bridge construction

Temporary bents method

Cantilever method

(Park et al. 2009)

Case study description



Cheongpoong Grand Brid

- Project location
- Chungcheongbukdo , Jaechon, Korea
- Specification of cable-stayed bridge
- Total Length = 442m
- Main Span Length = 327m
- Height of Pylon = 103m

(Park et al. 2009)

Derrick crane for Cheongpoong Grand Bridge

(Park et al. 2009

Derrick crane specifications

Item	Value
Boom length	19.65 m
Mast length	12.67 m
Total Height	17.64 m
Vertical speed	Up 0~1m/min; Down 0~1.5m/min
Turning speed	0.15 radian/min

(Park et al. 2009)

Deck segment installation procedure

- 1. As a precondition, the concrete deck of the side span is completed and two steel joints are connected to the concrete deck.
 - A rail is installed on the deck of the side span so as to easily move the derrick crane.
- 2. Move the derrick crane forward to the right position and anchor the crane to the lugs that are pre-installed.
- 3. Edge girders are moved and installed.
- 4. Man cages are placed for the bolting of the edge girders to the steel joints
- 5. Man cages are removed.
- 6. A safety net is installed using the two edge girders for the protection of the workers.
- 7. Floor beams are moved and installed.
- 8. Stringers are moved and installed.
- Working platforms are moved and placed, and using the platforms, construction workers hang and partially stress cables

(Park et al. 2009)

Deck segment installation procedure (Cont'd)

- 10. The working platforms are removed.
- 11. Six precast concrete panels are, one by one, moved and installed.
- 12. Cast-in-place concrete are used to join the precast concrete panels with each other and to the steel structural members (edge girders, floor beams, and stringers), resulting in the formation of a deck segment.
- 13. After three days of concrete curing, the cables are partially stressed again for the adjustment to the newly formed deck segment.
- 14. The rail is extended.
 - The rail is composed of two pieces: front part and back part.
 - To extend the rail, the back part is detached from the deck and installed as the new front part
 - the original front part becomes the back part. In this way, the rail can move forward continually.
- 15. The steps from 2 to 14 are repeated until the finish of the deck construction.

(Park et al. 2009)

Derrick crane setting

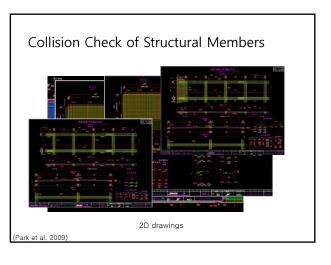
(Park et al. 2009)

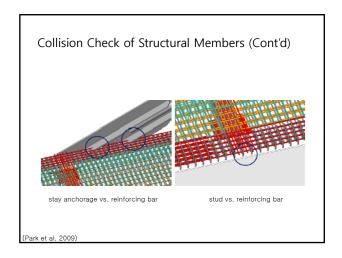
Edge girder installation

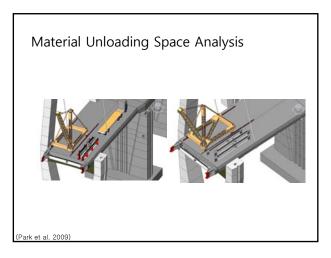
(Park et al. 2009)

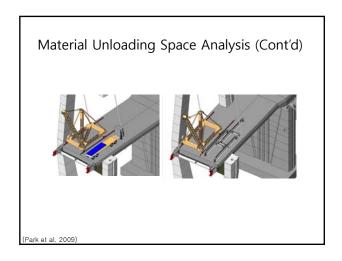
Man cage

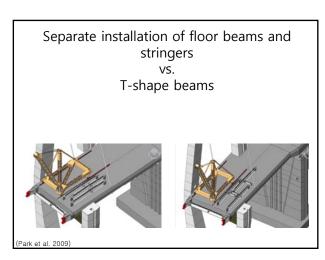
(Park et al. 2009)

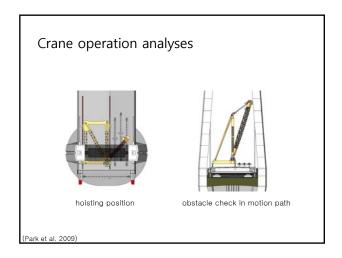


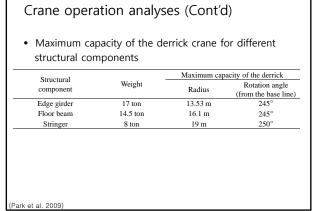


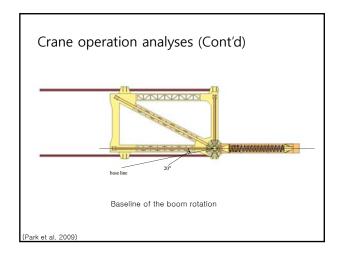


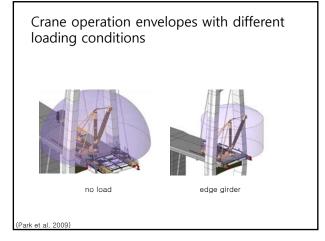


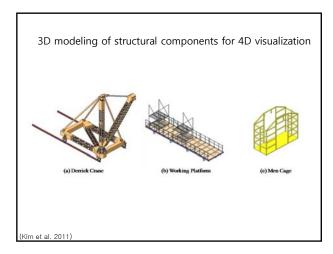








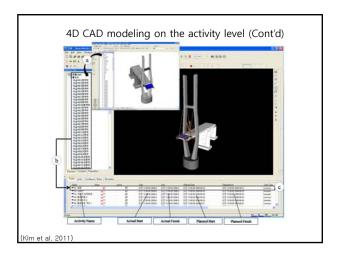


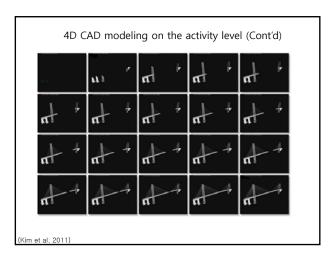


Crane operation envelopes with different loading conditions (Cont'd) floor beam stringer

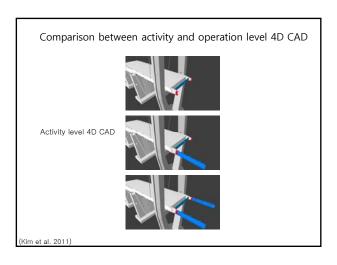
Applicability of 4D CAD in Civil Engineering Construction,

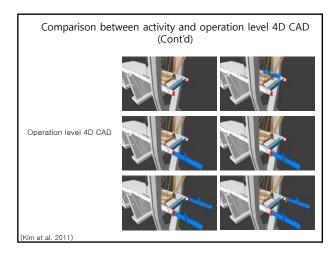
- Unsatisfactory performance of construction projects often originates from inappropriate design, incomplete construction planning, and/or lack of communication between construction practitioners
- To overcome the inefficiency of construction project management, constructability-oriented planning at the pre-construction or construction phase is essential.
- Four dimensional (4D) computer-aided design (CAD) is one of the promising methodologies that has been studied to aid in construction planning.
- However, there is a lack of 4D CAD application in the area of civil engineering

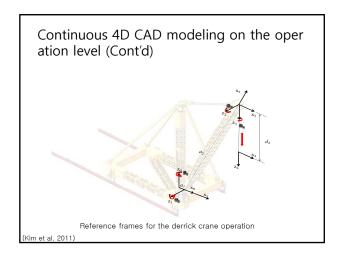

(Kim et al. 2011)

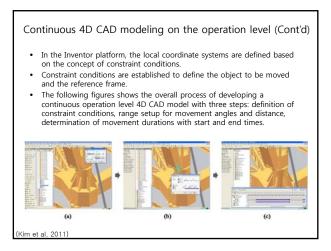


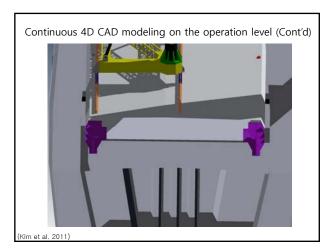
4D CAD modeling on the activity level


- To develop a 4D model, time schedule information is integrated with the existing 3D CAD components.
- Generally, 3D CAD systems that are currently available in the market do not have built-in functions that allow for this kind of information integration.
- In this study, commercial software JetStream produced by NavisWorks – was used to combine the 3D CAD and time information.


(Kim et al. 2011)

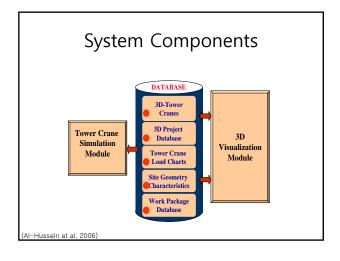


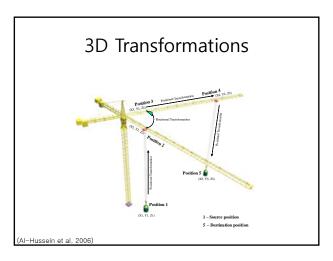


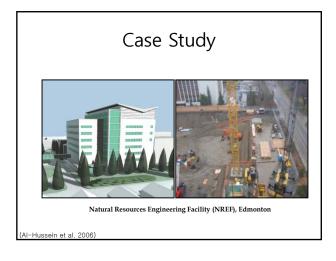

Continuous 4D CAD modeling on the operation level $\,$

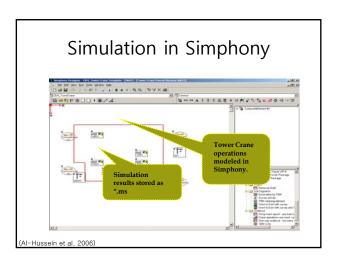
- 'Continuous' 4D CAD modeling signifies that the resultant model depicts the construction operation for a continuous period of time, with no time lapses.
- In this methodology, entire movement processes of construction equipment, such as derrick cranes and trailers, are displayed like motion pictures.
- In this study, the continuous 4D CAD model was developed in the Autodesk Inventor platform.

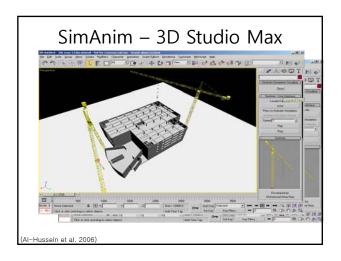
(Kim et al. 2011)






Integrating 3D visualization and simulation for tower crane operations on construction sites


- Computer simulation proved to be an effective tool for aiding practitioners in modeling complex construction operations.
- However, the use of simulation as a construction planning tool has fallen far below its maximum potential.
- The aforementioned problems justify the need for support tools that allow construction managers to construct simulation models and analyze results for themselves.
- Special purpose simulation (SPS) and 3D visualization of simulated operations are two potential means by which this goal can be achieved.


(Al-Hussein et al. 2006)

