CPM Precedence Method

Construction Project Management

2013. 3.26. Hyoungkwan Kim, PhD, PEng Yonsei University

Thoughts about Time

- Time and space
- Time and existence
- Time thieves from Momo by Michael Ende
- Living slow by Pierre Sansot
- Living in the present from Buddhism
- Longing for bucolic life style in Taoism and even in Confucianism
- Do these idea contradict the purpose of project time management?

Project Time Management

- The objective is timely completion of the project
- The basic approach is to break down the project into pieces that are understandable and manageable – activity.
- Activity is a unit of work that has information such as
 - Description
 - Duration
 - Location
 - Resources
 - Material
 - Geometric properties

— ...

Management Levels in Construction

Project Time Management

- Activity definition
- Activity sequencing
- Duration estimating
- Schedule development
- Time control

Activity on Node (AON) or Precedence Diagram

- Activities are represented on nodes or boxes
- Logical relationships are shown by arrows
- The length of arrows is not proportional to duration

Dependency (Relationship)

Finish to Start Finish to Finish Start to Start Start to Finish

Terminologies for Activity Times

- Early start date or earl start (ESD or ES)
 - The earliest time when the activity can start
- Early finish date or earl finish (EFD or EF)
 - The earliest time when the activity can finish
- Late start date or late start (LSD or LS)
 - The latest time when the activity can start
- Late finish date or late finish (LFD or LF)
 - The latest time when the activity can finish

Notation Example for Activity Information

Activity Description Resource Required / Duration Day ES (Early Start Date) EF (Early Finish Date)

LS (Late Start Date) LF (Late Finish Date)

Forward Pass Computation

- A process to calculate the early times of activities
- If there is no external constraint, the relationship between start and finish times within the activity is:
 - Finish time = start time + activity duration
- Early start time = maximum of all possible candidates for the early start time
- Early finish time = maximum of all possible candidates for the early finish time
- Assuming that we work 24 hours per day
 - n days of duration = 24*n hours of work
 - E.g. 3 days of duration = 72 hours of work
 - Activity finish date = activity start date + duration
 - E.g. start date: day 3; duration: 2 days
 - finish date: day 3 + 2 days = day 5
 - To be exact, if the work started from 9:00 AM, it would finish on 9:00 AM on day 5
 - The start date of the successor (immediately following activity) is the same as the finish date of the predecessor

Forward Pass Computation (cont'd)

- Assuming that we work 8 hours per day
 - n days of duration = 8*n hours of work
 - E.g. 3 days of duration = 24 hours of work
 - Activity finish date = activity start date + duration -1 day
 - E.g. start date: day 3; duration: 2 days
 - Finish date: day 3 + 2 days 1 day = day 4
 - To be exact, if the work started from 9:00 AM, it would finish on 5:00 PM on day 4
 - The activity start date of the successor = the start date + duration
 - The successor's start date = day 3 + 2 days = day 5
 - To be exact, if the work started from 9:00 AM, it would start on 9:00 AM on day 5

ES and EF Example

ES and EF Example

ES and EF Example

Another Notation for Dependency

Finish to Start

- ES $_{\rm B}$ = EF $_{\rm A}$ + Lag Value $_{\rm AB}$ = 43 + 4 = 47
- EF $_{\rm B}$ = ES $_{\rm B}$ + Duration $_{\rm B}$ = 47 + 12 = 59

Start to Start

- ES $_{\rm B}$ = ES $_{\rm A}$ + Lag Value $_{\rm AB}$ = 35 + 4 = 39
- EF $_{\rm B}$ = ES $_{\rm B}$ + Duration $_{\rm B}$ = 39 + 12 = 51

Finish to Finish

- EF $_{\rm B}$ = EF $_{\rm A}$ + Lag Value $_{\rm AB}$ = 43 + 4 = 47
- ES $_{\rm B}$ = EF $_{\rm B}$ Duration $_{\rm B}$ = 47 12 = 35

Start to Finish

- EF $_{\rm B}$ = ES $_{\rm A}$ + Lag Value $_{\rm AB}$ = 35 + 4 = 39
- ES $_{\rm B}$ = EF $_{\rm B}$ Duration $_{\rm B}$ = 39 12 = 27

Forward Pass Computation Example

Backward Pass Computation

- A process to calculate the late times of activities
- Backward calculation is conducted from the late finish time of the last activity of the project
- The late finish time of the project should be the same as the early finish time of the project
- If there is no external constraint, the relationship between start and finish times within the activity is:
 - Start time = late time activity duration
- Late start time = minimum of all possible candidates for the late start time
- Late finish time = minimum of all possible candidates for the late finish time

LS and LF Example

LS and LF Example

LS and LF Example

Finish to Start

- LF_A = LS_B Lag Value_{AB} = 52 4 = 48
- LS $_{A}$ = LF $_{A}$ Duration $_{A}$ = 48 8 = 40

Start to Start

- LS $_{A}$ = LS $_{B}$ Lag Value $_{AB}$ = 52 4 = 48
- LF $_{A}$ = LS $_{A}$ + Duration $_{A}$ = 48 + 8 = 56

Finish to Finish

- LF_A = LF_B Lag Value _{AB} = 64 4 = 60
- LS $_{A}$ = LF $_{A}$ Duration $_{A}$ = 60 8 = 52

Start to Finish

- LS _A = LF _B Lag Value _{AB} = 64 4 = 60
- LF $_{A}$ = LS $_{A}$ + Duration $_{A}$ = 60 + 8 = 68

Backward Pass Computation Example

Float (Slack)

Total float

 The maximum amount of time that an activity can be delayed from its early start or finish without extending the project completion time

```
Late finish – early finish = finish total float

Late start – early start = start total float

Finish total float and start total float are the same if there is no external constraints
```

Free float

- The amount of time that an activity can be delayed without extending the early start or finish of its immediate successors
- Since free float concerns the activity itself whereas total float concerns the entire project, free float cannot be larger than total float

Free float = minimum of early start times of immediate successors - early finish

TF and FF Example

TF and FF Example

TF and FF Example

Finish to Start

- TF = LF EF = 64 59 or 48 43 = 5
- FF $_{A}$ = ES $_{B}$ Lag Value $_{AB}$ EF $_{A}$ = 47 4 43 = 0

Start to Start

- TF = LF EF = 64 51 or 56 43 = 13
- FF $_{A}$ = ES $_{B}$ Lag Value $_{AB}$ ES $_{A}$ = 39 4 35 = 0

Finish to Finish

- TF = LF EF = 64 47 or 60 43 = 17
- FF $_{A}$ = EF $_{B}$ Lag Value $_{AB}$ EF $_{A}$ = 47 4 43 = 0

Start to Finish

- TF = LF EF = 64 39 or 68 43 = 25
- FF $_{A}$ = EF $_{B}$ Lag Value $_{AB}$ ES $_{A}$ = 39 4 35 = 0

Critical Path

- The sequence of activities with the least amount of total float
- The longest path in the CPM network
- The critical path is composed of critical activities
- Any delay on the critical path with zero total float would result in schedule overrun
- Multiple critical paths can exist

Float Computation Example